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TabPedia: Towards Comprehensive Visual Table Understanding with Concept Synergy
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Abstract
Tables contain factual and quantitative data accompanied by various structures and contents that pose challenges for machine comprehension. Previous methods generally design task-specific architectures and objectives for individual tasks, resulting in modal isolation and intricate workflows. In this paper, we present a novel large vision-language model, TabPedia, equipped with a concept synergy mechanism. In this mechanism, all the involved diverse visual table understand- ing (VTU) tasks and multi-source visual embeddings are abstracted as concepts. This unified framework allows TabPedia to seamlessly integrate VTU tasks, such as table detection, table structure recognition, table querying, and table ques- tion answering, by leveraging the capabilities of large language models (LLMs). Moreover, the concept synergy mechanism enables table perception-related and comprehension-related tasks to work in harmony, as they can effectively leverage the  needed  clues  from  the  corresponding  source  perception  embeddings. Fur- thermore, to better evaluate the VTU task in real-world scenarios, we establish a new and comprehensive table VQA benchmark, ComTQA, featuring approx- imately 9,000 QA pairs. Extensive quantitative and qualitative experiments on both table perception and comprehension tasks, conducted across various public benchmarks, validate the effectiveness of our TabPedia. The superior performance further confirms the feasibility of using LLMs for understanding visual tables when all concepts work in synergy. The benchmark ComTQA has been open-sourced at https://huggingface.co/datasets/ByteDance/ComTQA. The source code and model will be released later.

1	Introduction
With the rapid advancement of digital technology, numerous paper documents must be converted into electronic formats for efficient storage and utilization. Tables, as indispensable components
of documents, play a vital role in summarizing facts and quantitative data [1, 2]. The compact yet informative nature of tables makes them advantageous for various applications, thereby attracting widespread research attention toward Visual Table Understanding (VTU). VTU generally encom- passes four subtasks:  Table Detection (TD), which locates tables within document images; Table Structure Recognition (TSR), which parses the structure of tables in table-centric images;  Table Querying (TQ), which recognizes the structure of a table from an entire image at a given location, a task that remains underexplored in the previous works; and Table Question Answering (TQA), which
∗Equal contribution.♠Interns at ByteDance.‡Project lead.† Corresponding authors: Houqiang Li and Hao Liu.
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answers questions based on table contents. These tasks pose challenges from various perspectives due to the need for representations at different visual-semantic granularities and hierarchies.
Given the success achieved, many pioneering works have mainly centered on the specific subtask with various task-specific architectures, as shown in Fig. 1 (a). For visual table perception tasks such as TD and TSR, one of most adopted approaches is in the detection manner [3–9]. In contrast, generative vision-language models [10–13] are often employed to generate answers conditioned on the semantic content of tables for TQA task. Specifically, Vision Transformers (ViT) [14] pretrained on CLIP [15] or EVA-CLIP [16], Swin-Transformer [17], and similar models serve as vision encoders, while language models operate in either encoder-decoder [18, 19] or decoder-only frameworks [11, 20–22]. Besides, recent fast-growing Large Vision Language Models (LVLMs) [11, 13, 23–34] have shown their powerful capabilities to perceive and understand visual clues by integrating instruction following
of Large Language Models (LLMs) [35–39]. Despite impressive progress, the status quo begs for a question:“Can we leverage the advantages of LVLMs to solve all the VTU tasks once and for all?”
A straightforward solution would be to train the LVLM directly using all the VTU data. However, aside from the diverse table structure and the various relations of table contents, it remains a nontrivial issue due to two cruxes of table parsing and understanding: (i) discrepancy between the representation formats (two-dimensional structure VS. one-dimensional sequence); (ii) required image resolutions. Although some works [40–42] represent table structure in markup formats like HTML, XML, Markdown, or LATEX. However, they neglect spatial coordinates for cells and only encode logical relationships implicitly. The generated code contains extensive formatted information from different markup languages, increasing output length and potentially causing parsing issues with illegal grammars.
To attack above issues, we in this paper propose a novel LVLM tailored for comprehensive VTU, TabPedia, to effectively solve all VTU tasks in a unified framework, as shown in Fig. 1 (b). More concretely, we employ dual vision encoders, namely ViT-L [15] and Swin-B [43], to encode the global and fine-grained local information in the low- and high-resolution formats of the input image respectively, acquiring multi-source visual embeddings. Here, all the involved VTU tasks and multi- source visual embeddings are abstracted as concepts and concept synergy mechanism is implemented by introducing the mediative tokens to the LLM in our model. Thanks to this mechanism, all the concepts in TabPedia can work in synergy flexibly. Quantitative and qualitative experimental results
on both table perception and comprehension tasks across various public benchmarks confirm the effectiveness of our proposed TabPedia.  To further investigate the potential of our model in more challenging and realistic scenarios, we establish a new and comprehensive table VQA benchmark, ComTQA, featuring round 1,500 images and 9,000 QA pairs.
Our contributions are summarized as follows,
•We propose a novel large vision-language model, TabPedia, to integrate various VTU tasks into a unified framework, including TD, TSR, TQ and TQA. Specifically, TabPedia fully leverages the comprehensive capabilities of LLMs to fertilize complex table understanding.
•We design a concept synergy mechanism to harmonize both table perception and compre- hension tasks. Through introducing the meditative tokens into our framework, TabPedia adaptively enables useful information in multi-source visual embeddings and task instruc- tions, generating accurate and plausible responses.
• Extensive quantitative and qualitative experiments validate the effectiveness of our proposed TabPedia across various tasks and benchmarks. To further exploit the potential of our model in more complex scenarios, we build a new table VQA benchmark, ComTQA, involving multiple answers, mathematical calculation and logical reasoning, etc.


2	Related Work
2.1	Table Recognition
Table recognition is generally divided into table detection,  table structure recognition and table content recognition In our work, table content recognition is beyond our scope.
For TD task, the earliest approaches are rule-based methods for locating tables inside documents [44–46]. With the rapid advances in deep learning, numerous CNN-based methods show impressive
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Table Query different task Structure Parser instruction


TD
Here is a list of table… in this pic:
[x1, y1, x2, y2]

Table
Detector
Table
Structure Parser
Table QA
En-Decoder
input question


table locations
markup code / table ce ls locations
specific response



TabPedia
TQA
Q: What the inital body weight in control ?
A: 113±9 g


TSR
The table structural…in this pic:
<obj_1> [x1, y1, x2, y2]\n <obj_2> [x3, y3, x4, y4]\n
. . .
TQ
The table structural…in the region of [x1, y1, x2, y2] :
<obj_1> [x3, y3, x4, y4]\n <obj_2> [x5, y5, x6, y6]\n
. . .

(a) Previous task-specific pipelines	(b) Our proposed TabPedia
table detection (TD)	table structure recognition (TSR)	table query (TQ)	table question answering (TQA)
Figure 1: Comparison with previous task-specific pipelines for visual table understanding. In contrast to design different architectures for various table tasks, our TabPedia effectively performs these tasks in a unified framework through delicately leveraging the understanding capability of LLMs.
performance. Most of these methods directly adopt top-down object detection frameworks to solve this problem [5, 47–52]. For instance, Sun et al. [52] adopt Faster R-CNN [52] to detect table boxes and the corresponding corner boxes simultaneously, and then adjust table boundaries according to the detected corners. Some other methods model each document image as a graph and formulate TD as a graph labeling problem [53–55]. In addition, TATR [9] first applies the transformer-based detector, DETR [56], to improve the detection accuracy without special customization.
For TSR task, one of the most common modeling approaches is still to regard it as some form of object detection [3–5, 9, 57–59]. Among them, DeepDeSRT [4] and TableNet [60] are both representative works exploring semantic segmentation to obtain table cell boundaries. TATR [9] first proposes to utilize DETR for this task. TSRFormer [58] introduces a cross-attention module into the DETR framework to improve the localization accuracy of row/column separators. Some other methods attempt to parse table structure via modeling relationship among different table elements [61–63]. As the most relevant to our approach, markup generation-based methods directly generate markup (HTML or LaTeX) sequences from raw table images [41, 64]. EDD [64] introduces a cell decoder and a structures decoder to generate HTML codes. OmniParser [41] further integrates three task-specific decoders to enhance the table structure representation.
While the previous methods have achieved promising results on table perceptive tasks, they are still limited in table intricate content understanding. In our work, we jointly exploit table perception and comprehension tasks in a unified framework, concurrently enriching visual table understanding.
2.2	Large Vision-Language Models
LVLMs aim to equip LLMs [29, 36, 38, 39, 65] with visual comprehension capability. The mainstream approaches attempt to connect visual encoders and LLMs with intermediate modules such as simple Projectors [30], QFormer [25], Perceiver Resamplers [23], achieving visual language understanding through pre-training alignment and instruction fine-tuning. For text-rich document scene, several works [10, 13, 40, 41, 66–68] propose to enhance the LVLMs’ capabilities in understanding textual elements (text-centric VQA, OCR, text spotting, etc.). Among them, TextMonkey [12] employs shifted window attention and token resampler module to improve the training process. DocOwl- 1.5 [40] collects a comprehensive dataset DocStruct4M to support unified structure learning.
Despite achieving extraordinary progress on visual understanding, existing LVLMs still face chal- lenges in two-dimensional table parsing and understanding. In this paper, we propose a unified
framework to concurrently achieve table perception and comprehension with the support of LLMs.
2.3	Additional Tokens
In the trend of Transformer-based approaches, extending the input sequence with special tokens is popularized for various intentions, such as extracting task-specific information [14, 56], providing extra information [69, 70] or improving model performance [71–74]. For instance, ViT [14] utilizes [CLS] token for classification. Similarly, DETR [56] proposes object queries for detection. ATR [70] adopts tape tokens to obtain useful information from a memory bank. In addition, the Memory Transformer [71] presents a simple approach to improve translation performance by attaching trainable memory tokens after the token sequence. Darcet et al., [73] further attempt to add extra tokens in ViT- based frameworks, e.g., CLIP [15] and DINOv2 [75], thus improving visual tasks. In our work, we
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Large Language Model (Vicuna-7B)

Pre-Training Vicuna-7B
Projections

…
Tokenization
“Display the table element positions in this picture.”

…	…
Projection	Projection
Low-Resolution High-Resolution Vision Encoder Vision Encoder

…
Meditative Tokens

Vision Encoders
Fine-Tuning Vicuna-7B
Projections Vision Encoders


Figure 2: The illustration of our proposed TabPedia. Given the input image, TabPedia feeds it into both vision encoders attached projections to extract different granular features. Then, the visual tokens are combined with instruction-derived tokens, and fed into the LLM. The LLM leverages its powerful understanding ability to generate a plausible response.
inherit this spirit and design meditative tokens to enhance TabPedia’s perceptive and comprehensive capability for visual tables.
3	Method
As shown in Fig 2, we present an overview of TabPedia.  The overall training pipeline consists of two phases. Concretely, the pre-training stage aims to align the visual features to the large language model, and the fine-tuning stage focuses on visual table-aware understanding. In the following, we elaborate on the architecture of TabPedia, followed by the exposition of its two training phases.
3.1	Model Architecture
High-Resolution Vision Encoder. As proved by previous methods [43, 76, 77], the high-resolution image is critical to ensuring that the LLMs could grasp rich visual information. Following Donut [43], we adopt Swin-B [17] to encode the high-resolution format of input image.  Given the input RGB image I, we first resize it to pre-defined high-resolution scale of H×W, denoted as Ih. By default, both H and W are set to 2,560 and 1,920, respectively. Notably, we maintain the aspect ratio during the resizing process to prevent distortion of table contents and structures. Then, the resized image Ih is fed into the vanilla Swin Transformer initialized from [43] to obtain a feature map Vh downsampled by a factor of 1/32, each token with 1,024 dimension.
Low-Resolution Vision Encoder. To keep the overall layout information, the raw image is also resized to a low-resolution one denoted as Il. We choose the pre-trained CLIP visual encoder ViT- L/14 [15] to encode the low-resolution image with 224×224. The output sequence Vl is composed
of 256 tokens, each with 512 dimension.
Projections.	The projections are designed to align visual tokens with the input token dimension
of the subsequent large language model [65]. For the high-resolution feature map Vh, due to the limitation of input text length, we employ a 2D convolutional layer with a kernel size of 3 and a stride
of 2, and then flatten it into 64H ×W64 tokens, denoted as Vˆh. For the low-resolution visual features Vl,
inspired from the paradigm of advanced LVLMs [29, 30], we adopt a linear layer to project visual
tokens, denoted as Vˆl.
Concept Synergy. Given the massive visual tokens and the embedding of textual instruction Q, we utilize Vicuna-7B [65] as LLM to generate its response. Taking into account the discrepancy of table perception and comprehension tasks, we introduce meditative tokens M to implement the concept synergy for the LLM, which adaptively enable different region of visual tokens and understand the intentions of specific task question. Finally,  we construct the whole input sequence as X =
[Q, <IMG_S> ;Vˆl ; <IMG_SEP> ; Vˆh ; <IMG_E> ; M], where [; ] means the concatenation operation.
<IMG_S>, <IMG_E> and <IMG_SEP> are learnable special tokens, that denote the start and end of visual tokens as well as the separation of different resolution tokens, respectively.
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Table 1: Summary of training data statistics in the fine-tuning stage.
Dataset	Subset	Task	Num
PubTab1M-Det TD 460k PubTab1M PubTab1M-Str TSR,TQA 759k PubTab1M-Syn TQ 381k
FinTabNet – TSR,TQA 78k PubTabNet – TSR 434k
WTQ – TQA 1k TabFact – TQA 9k

Table 2: Different task types and their instruc- tion examples. (
Task
Example
TD
“Give
 
me
 
the
 
areas
 
where
 
table
 
element’s 
locations
 
in
 
this
 
picture.”
TSR
“Parse
 
the
 
structural
 
information
 
of
 
the
 
cropped 
table
 
in
 
this
 
picture.”
TQ
“Parse
 
the
 
table
 
structure
 
within
 
the
 
region
[0.095,
 
0.673,
 
0.869,
 
0.851]
 
in
 
this
 
picture.”
TQA
“What
 
was
 
the
 
lowest
 
stock
 
price
 
in
 
the
 
fourth 
quarter
 
of
 
2010?”
)

Objective. Since TabPedia is trained to predict the next tokens like other LLMs, it is optimized by maximizing the likelihood of prediction loss at training time.
3.2	Pre-training
To enable the capable of vision encoders to capture text-rich information from high-resolution images and aligning embedding space with the large language model [65], we first perform extensive text- aware pre-training. As shown in Fig. 2,  we jointly optimize the high-resolution visual encoder with both projectors, while freezing the large language model and low-resolution vision encoder. Specifically, followed by [10], our pre-training procedure involves a variety of perception tasks, i.e., text detection [78], recognition [79], spotting [80], long-text reading [43] and image captioning [81]. The  first  four  tasks  focuses  on  the  various  document  images, while  the  last  one  targets  natural scene images. These comprehensive tasks endow the vision encoders of TabPedia to effectively perceive textual and visual information from both document and natural scene images. More detailed pre-training settings about dataset and experiment could be referred to [10].
3.3	Table-aware Fine-tuning
Through pre-training, TabPedia could well understand text and structure of diverse document images but cannot follow instructions to perform different table understanding tasks.  In order to enhance the model capability of instruction following, we first construct a large-scale dataset for visual table understanding. We will elaborate on the dataset construction in the Sec. 4. Based on this dataset, we introduce four table-related tasks, i.e., TD [9], TSR [5, 9, 64], TQ and TQA [5, 9, 82, 83] to simultaneously cultivate the perception and comprehension capabilities. In this stage, we further unfreeze the LLM and fine-tune the entire framework except the low-resolution vision encoder.
4	Dataset Construction
In this section,  we aim to introduce the collected instruction following dataset. The entire data is  derived  from  five  public  datasets, including  PubTab1M  [9], FinTabNet  [5], PubTabNet  [64], WikiTableQuestions  (WTQ)  [82]  and  TabFact  [83]. Among  them, PubTab1M  [9]  contains  two subsets, i.e., PubTab1M-Detection (PubTab1M-Det) and PubTab1M-Structure (PubTab1M-Str). Moreover, since the table images in PubTab1M-Str are cropped from PubTab1M-Det, we transform the annotations of the table structure in PubTab1M-Str into the original images and synthesize a new subset PubTab1M-Syn, which could be utilized for TQ task. The statistical data are summarized in Tab. 1. To ensure the instruction diversity, we generate multiple instructions for each task using GPT3.5 [21]. In Tab. 2, we display one exemplar about user’s question for each table task. We will provide a detailed exposition of them in the following.
Table Detection (TD). As a fundamental task,  TD task targets to detect all table locations in a document image. Previous methods [3, 6, 9] mainly utilize DETR [56] or variants of R-CNN [84–86] to predict numerous overlapping bboxes, that inevitably needs complex post-processing, such as non-maximization suppression (NMS), to generate final results. In contrast, we employ LLM to directly generate the locations of instance tables in the format of “[x1, y1, x2, y2]”, where x1, y1, x2, y2 represent the normalized coordinates of the top-left and bottom-right of the corresponding bbox. Moreover, to facilitate detection results for multiple tables, we split multiple table positions with the
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special symbol“\n”in the output response. We adopt PubTab1M-Det [9] to perform TD task, where images are collected from PDF documents with different scale and rotation types of tables.
Table Structure Recognition (TSR). The TSR targets to parse table structure in terms of rows, columns and cells. HTML and Markdown codes are mainly two kinds of text sequences used to represent a table. HTML could represent all kinds of tables, with or without cells spanning multiple rows and grids, but they contain massive markup grammars i.e.,“<div></div>”and“<td></td>”, resulting in excessively lengthy output responses. Compared with HTML, Markdown represents a table more succinctly, but it cannot represent cells spanning multiple rows or columns. By weighing the simplicity of the output and the completeness of the table parsing, we propose a canonical table structure representation based on the detection format. Inspired by [9], we jointly adopt five object classes to model TSR, including table column, table row, table column header, table projected row header  and table spanning cell. To better understanding, we display a representative sample in Appendix B. Taking into account the serialized output of the LLM, we represent the table structure with a series of “[object] [x1, y1, x2, y2]”, which are also separated by“\n”.Notably, we standardize the order of the output objects to ensure uniqueness of the table parsing results.
We select the PubTab1M-Str [9], FinTabNet [5] and PubTabNet [64] to support the TSR task, where tables are collected from scientific and financial articles. These datasets contain pairs of table images and HTML annotations. We convert HTML codes into our designed annotation format using the pre-processing tool offered by [9].
Table Querying (TQ). Different from recognizing table structure from the cropped table-centric images in TSR task, the TQ task directly parses the table from the original document image based on the given table location. This task is more challenging due to the degradation of the table’s resolution and the interference of other document contents around it. Moreover, this task could potentially be combined with TD task to enable automatic parsing of all table structure information in original images. Therefore, we introduce this task to fully unlock the comprehension capabilities of large language models for visual table understanding. For the annotation of table parsing, we adopt the same format as TSR. Since there is no readily available dataset, we synthesize a large amount of available data based on the annotations from PubTab1M [9], namely PubTab1M-Syn.
Table Question Answering (TQA). TQA aims to provide precise answers through table understand- ing and reasoning. For both public TQA datasets, i.e., WTQ [82] and TabFact [83], the table images are collected from wikipedia tables with pairs of content-related question and answer. Thus, we could directly apply these available data to support this task. However, the images of current TQA data are rendered from text-based tables with variations in background color and font size, resulting in poor generalization in real-world tables. In addition, the TQA data volume lags far behind other tasks. To alleviate these obstacles, we generate numerous TQA data with partial images in FinTabNet [5] and PubTab1M [9] by employing the powerful multi-modal understanding capabilities of Gemini Pro [87]. We provide more detailed descriptions of the procedure in the Appendix A.1
To better evaluate TQA performance of various models on real-world table images, we build a complex TQA dataset (ComTQA) based on test set of FinTabNet [5] and PubTab1M [9]. Compared to WTQ and TabFact, ComTQA has more challenging questions, such as multiple answers, mathematical calculations, and logical reasoning. In total, we annotate∼9k high-quality QA pairs from∼1.5k images by expert annotation. More statistics about ComTQA could be found in the Appendix A.2.
5	Experiment
5.1	Implementation Details
Parameter Settings. For the hyper-parameters in model design, the number of meditative tokens is set to 256. The max length of text sequence is set to 4000 to satisfy task requirements. To implement TabPedia, we adopt a cosine schedule with one-cycle learning rate strategy [88]. In the pre-training phase, the learning rate warms up in the first 2% of the training process and then decreases from the peak rate (1e-3) with batch sizes of 64. In the fine-tuning phase, we set the peak learning rate as 5e-6 with batch sizes of 16. We employ the AdamW optimizer [89] in both phases. All experiments are implemented by PyTorch [90] and trained on 16×A100 GPUs.
Datasets. In order to comprehensively evaluate the capability of TabPedia, we employ multiple benchmarks for each task. For performance assessment, we set the temperature parameter as 0.2
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Table 3: Comparison with the existing best table detec- tion  model  TATR  [9]. NMS  denotes  Non-Maximum
Suppression.

Table 4: Comparison with end-to- end TSR methods on two datasets.
“∗”represents the results reported by [41].

Method	Backbone	NMS

IoU@0.75
Precision	Recall	F1


Method	Input Size

PubTabNet FinTabNet S-TEDS S-TEDS


Faster R-CNN 92.7 86.6 89.5 TATR [9] (
Donut
 
[ 
EDD
43]
64]
∗ 
1,280
 
25.28
 
30.66 
512
 
89.90
 
90.60
)
DETR	98.8	98.1	98.4
TabPedia	LVLM	98.5	98.4	98.4





TabPedia	2,560	95.41	95.11



Table 5: Quantitative results on two subsets of Pub- Tab1M  [9], including  PubTab1M-Str  and  PubTab1M- Syn.
(a) Comparison with the task-specific model, TATR [9] on TSR task. “Cropped” denotes utilizing cropped table-centric images.

Table 6: Comparison with existing LVLMs on TQA task. “∗”denotes the results obtained through the open- source checkpoint or API of the closed- source model. ComTQA is our re- leased  new  benchmark. The  second

Method	Backbone	Image	NMS

PubTab1M-Str
GriTSTop	GriTSCont	GriTSLoc	S-TEDS

best methods are underlined.


TATR [9]

Faster R-CNN Cropped 86.16 85.38 72.11 –DETR Cropped 98.46 97.81 97.81 97.65


Method	Input Size

WTQ TabFact ComTQA Acc Acc Acc

TabPedia (TSR)	LVLM	Cropped	96.52	96.73	95.54	95.66

TextMonkey [12] 896 37.9 53.6 13.9∗Monkey [93] 896 25.3∗ 49.8 –

(b) Quantitative results on both TQ and TD+TQ tasks.

Cogagent [94] 1,120 30.2∗ 51.7∗ –DocOwl 1.5 [40] 1,344 39.8 80.4 18.5∗

Method	Image	NMS	Task

PubTab1M-Syn
GriTSTop	GriTSCont	GriTSLoc	S-TEDS

GPT4V [95] 645 45.5∗ 69.3∗ 27.2∗Gemini Pro [87] 659 32.3∗ 67.9∗ 29.3∗
Xcomposer2 [96]	511	28.7	62.3	–


TabPedia	Raw

TQ 96.04 96.23 94.95 95.07 TD+TQ 94.54 94.63 93.25 93.38

TabPedia	2,560	47.8	71.3	53.5


in both quantitative and qualitative evaluations. For TD task, PubTab1M-Det [9] contains 57,125 images for testing. For TSR task, FinTabNet [5], PubTabNet [64] and PubTab1M-Str [9] are adopted for evaluation with 9,289, 9,115 and 93,834 testing samples, respectively. For TQ task, the synthetic dataset PubTab1M-Syn [9] also provides 47,186 samples for testing. For TQA task, WTQ [82], TabFact [83] and our annotated ComTQA contain 4,343, 12,722 and 9,070 QA pairs, respectively.
Evaluation Metrics. For TD task, we report the results with object detection metrics, including precision, recall and f1-score with IoU@0.75. For both TSR and TQ tasks, we utilize Structure Tree-EditDistance-based Similarity (S-TEDS) [64], which evaluates table similarity of structural aspects in HTML format. The metric represents the HTML table as a tree, and the TEDS score is computed through the tree-edit distance between the ground truth and predicted trees. In order to convert the results of TabPedia into HTML format, we employ the post-processing algorithm provided by [9]. Moreover, we report the recently proposed GriTS metrics [91] for PubTab1M-Str to align its original metric. Different from S-TEDS, GriTS represents tables as matrices,  better capturing the two-dimensional structure and the orders of cells in a table. Further, GriTS enables TSR to be assessed from multiple perspectives, with GriTSTop measuring cell topology recognition, GriTSCont measuring cell content recognition, and GriTSLoc measuring cell location recognition. For TQA task, we adopt the accuracy metric where the response generated by the model is judged correct if it contains the string present in the ground truth [92].

5.2	Quantitative Results
We conduct quantitative evaluations of current state-of-the-art methods for specific tasks in perception and comprehension, comparing them to our proposed TabPedia.
Evaluation  on  TD.  In  Tab.  3, we  compare  TabPedia  with  the  previous  state-of-the-art  method, TATR  [9]. TATR  performs  the  table  detection  with  two  classic  visual  detection  backbones, i.e, DETR [56] and Faster R-CNN [85]. Compared with them, TabPedia outperforms Faster R-CNN with a notable margin and achieves competitive performance with DETR. Notably, since TabPedia directly generates the independent locations of instance tables without densely overlapped bboxes, there are no extra post-processing operations involved, i.e., Non-Maximum Suppression (NMS). This
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advantage could enable TabPedia to perform more complex table understanding, such as parsing all tables by combining TD and TQ tasks.
Evaluation on TSR. Tab. 4 reports the performance of TSR task compared to end-to-end TSR models
on PubTabNet and FinTabNet datasets. Specifically, the OCR-free model Donut [43] is fine-tuned for TSR with the official default training configuration. Although OmniParser [41] integrates multiple visually-situated text parsing tasks into a unified framework, it adopts three isolated decoders to perform different tasks. Compared with OmniParser, TabPedia consistently surpasses it with 4.96% and 3.56% S-TEDS on both datasets, respectively. In Tab. 5a, TATR as the task-specific method, shows high performance with the DETR architecture. Our proposed TabPedia, a generic model for tasks involving both perception and comprehension, still achieves comparable performance without the need for complex post-processing. These results highlight the exceptional capability of TabPedia.
Evaluation on TQ. As a new and unexplored task, the TQ task aims to parse table structures with the specific location directly from the raw image without additional cropping. In the first row of Tab. 5b, we provide a strong baseline with 96.04% and 95.07% on GriTSTop and S-TEDS, respectively, which nearly reaches the same performance as parsing from the cropped images under the interference of the document content around the table. Furthermore, we integrate both TD and TQ tasks in the form
of multi-round dialogue, which endows TabPedia to directly parse all existing tables in a document image. We report the final result in the second row of Tab. 5b. These impressive results demonstrate that TabPedia has the potential to enable more holistic table understanding.
Evaluation on TQA. Due to the complex structure of tables and the dense text, the understanding
of the table contents remains a challenging issue. To thoroughly evaluate the performance of the understanding of table content and structure, we adopt two public benchmarks, i.e., WTQ [82] and TabFact [83], and our collected dataset ComTQA, as shown in Tab. 6. On the WTQ and TabFact, TabPedia achieves promising performance among the open and close sources LVLMs. In contrast to existing benchmarks, ComTQA contains real-world table images with more complex questions. It is observed that current LVLMs show poor performance due to the incomplete understanding of real-world table structures. Compared with them, TabPedia achieves the optimal result with a notable margin, which demonstrates the effectiveness of jointly learning perception and comprehension tasks.
5.3	Qualitative Results
We further conduct qualitative evaluation on TabPedia’s perception and comprehension capabilities. Firstly, we show the perception capability of TabPedia with solely TD and TSR tasks, as illustrated in the first row of Fig. 3. TabPedia accurately generates reliable and formatted results, which are rendered to the original image for better observation. Secondly, TabPedia performs a complex task to directly parsing all table structure information in a document image by integrating instructions of TD and TQ tasks within a multi-round dialogue. As shown in the second row of Fig. 3, the example indicates that TabPedia is capable of exploring more holistic visual table understanding. In the last row, we display the table comprehensive capability of TabPedia. It is observed that the response not only contains concise and reliable answer, but also provides the specific contents in the table to support its answer. Especially, TabPedia even acquires certain math calculation ability to capture the connections among table contents, as shown in the bottom right example in Fig. 3. These results demonstrate Tabpedia’s powerful multimodal comprehension capabilities. We also display more visualization results in the Appendix D.
5.4	Ablation Studies
In this section, we conduct ablation studies to validate the effectiveness of core settings and compo- nents in TabPedia. All experiments are conducted on three datasets across three tasks: PubTab1M- Det [9], FinTabNet [5] and WTQ [82].
Impact of meditative tokens. In Tab. 7, we conduct the experiment to investigate the impact of adding meditative tokens in TabPedia. It is observed that adding meditative tokens significantly improves TabPedia’s capabilities of table perception and comprehension. We also provide a detailed analysis of the attention map of meditative tokens in Fig. D5 of Appendix. D.
Impact of vision encoders. As shown in Tab. 8, we explore the impact of different vision encoders. In TabPedia, we propose both vision encoders to capture global and local information of the input image with different resolutions. For the high-resolution encoder, it could extract more intricate
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Here is a list of a l the locations of table element in the picture:
[0.095,0.152,0.898,0.494]\n [0.095,0.594,0.813,0.751]
Rendering in the original picture
ADS_2007_page_176_table_0.jpgADS_2007_p age_176_table_0.jpg

The table structural information in the picture is listed as fo lowing:
spanning ce l [0.586,0.154,0.991,0.170]\n spanning ce l [0.586,0.189,0.991,0.207]\n projected row header [0.004,0.207,0.991,0.227]\n
……
column [0.877,0.154,0.991,0.845]

Rendering in the
original picture

Display the table element positions
in this picture.

Extract the structural information
of the cropped table in this picture.




Here is a list of a l the locations of table element in the picture:
[0.085,0.097,0.485,0.667]\n [0.513,0.097,0.912,0.443]
Describe the specific structure of the table in the region [0.085,0.097,0.485, 0.667] of this picture.
The table structural information in the region [0.085,0.097,0.485,0.667]

……
row [0.085,0.638,0.485,0.654]\n row [0.085,0.654,0.485,0.667]\n
column [0.085,0.097,0.273,0.667]\n column [0.273,0.097,0.351,0.667]\n column [0.351,0.097,0.434,0.667]\n column [0.434,0.097,0.485,0.667]
Describe the specific structure of the table in the region [0.513,0.097,0.912, 0.443] of this picture.


……
column [0.791,0.097,0.864,0.443]\n column [0.864,0.097,0.912,0.443]




Rendering in the
original picture


Display the table element positions in this picture.

of the picture is listed as fo lowing:
projected row header
[0.085,0.153,0.485,0.173]\n
projected row header…

The table structural information in the region [0.085,0.097,0.485,0.667]
of the picture is listed as fo lowing:
projected row header…











What was the change in weighted-average exercise

According to the table, the change in weighted-average exercise price from 2005 to 2006 is $21.08. In 2005, the
weighted average exercise price was $57.54 and in 2006 it




Gemini

ADS_2007_page_176_table_0.jpgADS_200
7_page_176_table_0.jpg
joel houston compose 4 of the song on the album con todo,

ADS_2007_page_176_table_0.jpgADS_2007_page_176_
decreased to $36.46.	✓
price from 2005 to 2006?
table_0.jpg

Yes or No?
Yes Reason: From the image, we can see that Joel Houston composed 4 songs on the album Con Todo, which are 'Para Exaltar', 'Correndo', 'Desde Mi Interior' and 'Con Todo'. So the answer is Yes.

Decrease of $21.08 thousands Reason: The weighted-average exercise	$0.98	✗
price decreased by $21.08 from $57.54 in 2005 to $36.46 in 2006. This decrease can be a tributed to a number of factors, including a decrease in the fair value of the company's stock and a decrease in the expected
future cash flows of the company.	✓	$18.12	✗

Text Monkey
DocOwl 1.5

Figure 3: Qualitative results of TabPedia on diverse tasks. The first row shows its perception capability
on both TD and TSR tasks. The second row further exhibits TabPedia’s powerful ability by employing multiple instructions of different tasks. The bottom row showcases TabPedia’s accurate responses based on intricate contents in visual tables. Zoom in for best view.


Table 7: Impact of meditative tokens in Tab-


Table 8: Impact of vision encoders in our TabPedia.

Pedia.
meditative

High-Res	Low-Res
PubTab1M-Det	FinTabNet	WTQ	Encoder	Encoder

PubTab1M-Det FinTabNet WTQ Precision S-TEDS Acc

token

Precision	S-TEDS	Acc

✓	96.5	93.6	44.9

93.5	92.17	43.2
✓	98.5	95.11	47.8

✓ 86.2 81.3 24.7✓ ✓ 98.5 95.11 47.8


information from the text-rich image and achieve better performance than solely utilizing the low- resolution encoder. Furthermore, the low-resolution encoder plays a  crucial role in furnishing comprehensive layout information, addressing the constrained receptive field of the high-resolution encoder. The results clearly indicate that the synergy between both vision encoders enhances the extraction of structural and content-related details from tables, which effectively improves perception and comprehension tasks.

6	Limitation
In this section, we discuss the limitations of our TabPedia. Firstly, since we represent the table structure with regular rectangular boxes, TabPedia is currently not capable of accurately parsing structural information for twisted or distorted tables. Secondly, all images in TQA datasets, including WTQ [82], TabFact [83] and ComTQA are dominated by tables. Therefore, TabPedia still lacks the capability to directly answer the table question with original document image.  In addition, it also exhibits a deficiency in table cell recognition.
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7	Conclusion
In this paper, we propose a novel large vision-language model to unify diverse visual table under- standing tasks, namely TabPedia. Specifically, we present a concept synergy mechanism to seamlessly integrate diverse tasks and multi-source visual tokens embedded from dual vision encoders as con- cepts. This mechanism is implemented by introducing the meditative tokens into the LLM. Then, we  fully  leverage  the  capability  of  LLMs  to  effectively  understand  these  concepts  and  generate accurate and plausible responses. Extensive quantitative and qualitative experiments across various public benchmarks validate the effectiveness of our TabPedia. To further investigate the potential of TabPedia, we establish a challenging table VQA dataset, ComTQA, featuring round 9,000 QA pairs.
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User


First recognize the table structure with OCR results in the image, then
please generate several distinct question and answer pairs. All the question and answer pairs should satisfy:
1. STRICTLY related to the table structure including OCR results.
Generate 2. The questions and the answers should be in as much details as possible.
3. If applicable, all the answers should be complemented in the "chain-of- thought" pattern.
4. The questions should contain at least one reasoning question. 5. The format should strictly follow: QUESTION1: XXXX ANSWER:XXXX QUESTION2: XXXX ANSWER:XXXX  ..


QUESTION 1: What is the amount of long-term debt and lease
obligations in 2011?\nANSWER: $85,543,000.\n\nQUESTION 2:
What is the amount of short-term debt in 2010?\nANSWER:
$8,676,000.\n\n
……
QUESTION 9: Which year has the least amount of long-term debt and lease obligations?\nANSWER: 2011 has the least amount of long-term debt and lease obligations, with $85,543,000.
Filter





Gemini


Q: What is the amount of long- term debt and lease
obligations in 2011? A: $85,543,000.


Q: What is the trend of interest income from
2009 to 2011?	…
A: The trend of interest income from 2009 to 2011 is increasing.


Q: Which year has the least amount of long-term debt and lease obligations?
A: 2011 has the least amount of long-term debt and lease obligations, with $85,543,000.

Figure A1: The illustration of an example for generating QA pairs with the powerful LVLM, Gemini Pro [87]. The prompt includes several key rules to ensure the response quality as much as possible.


A.2	ComTQA Benchmark
In Tab. A1,  we present the distribution of both data sources [5, 9] within the ComTQA dataset. Concretely, ComTQA comprises a total of 9,070 QA pairs across 1,591 images, averaging 5 questions per image. Different from existing TQA benchmarks [82, 83], ComTQA contains more complex table questions in real-world table images to assess the robustness of various models. As shown in Fig. A2, we showcase several representative examples, including multiple answers, mathematical calculation and logical inference,  which are the question types lacking in previous benchmarks. To this end, we hope that ComTQA could fill this gap and serve as a reasonable benchmark for community development.
Table A1: Statistics of ComTQA benchmark.
PubTab1M	FinTabNet	Total
#images	932	659	1,591
Q: Which beta value has the highest classification accuracy?
#QA pairs	6,232	2,838	9,070
A: 0.4 \n 0.6 \n 0.8 \n 1.0
Avg. per image	6	4	5
(a) multiple answers














Q: Which beta value has t A: 0.4 \n 0.6 \n 0.8 \n 1.0
(a) mu










on factors for the three models? alculation

Q: What is the sum of the calibration factors for the three models? Q: Which model predicts the largest volume at time 72? A: 3.8018 A: Richards
(b) mathematical calculation	(c) logical inference
Figure A2: More visualization on ComTQA benchmark. We display several complex QA types, such
Q: Which model predicts the largest volume at time 72?
asA:multipleRichards	answers, mathematical calculation and logical inference. Zoom in for best view.
(c) logical inference
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B Annotation in TSR task
We illustrate the object classes utilized in TSR and TQ tasks as shown in Fig. B3. The intersection of each pair of table column and table row objects can be regarded as table grid cells.  These objects construct a table’s hierarchical structure through physical overlapped rectangle boxes.



	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	



Row(odd) Row(even)

Column(odd) Column(even)

Spanning cell Columnheader


Projected row header

Figure B3: The illustration of an example table with dilated bounding box annotations for different
object classes for modeling table structure recognition.

C	Broader Impact
Our proposed model targets to unify multiple visual form comprehension tasks. This technology could help more people with visual impairments access tabular data through cooperating with improved screen readers and other assistive technologies. Moreover, automating table understanding technology could reduce the need for time-consuming manual data entry and correction, freeing up human resources for more complex and creative tasks. To be honest, this technology also brings some negative societal impacts. As more table data is extracted and processed with automatic visual table understanding, there is a heightened risk of sensitive information being mishandled or exposed. It is crucial to ensure robust data privacy measures.
D	More Qualitative Results
Results on in-the-wild cases. For better investigating the generalization of our proposed TabPedia, we randomly select some document images from a document website and illustrate the generation results in Fig. D4.  For perception and comprehension tasks, TabPedia generates accurate and reasonable responses in TD, TSR and TQA tasks, which sufficiently proves the robustness of our method for visual table understanding.
Attention map of meditative tokens. In order to analyze the information extraction of meditative tokens for different tasks, we visualized the attention maps of meditative tokens for input instructions with different granularity of visual feature tokens, as shown in Fig. D5. For each task, we select the shallow and deep four-layer attention maps in the LLM for visualization, respectively. The y-axis represents the meditative tokens, while the x-axis represents the sequence of instruction tokens and different granular visual tokens. For perceptive tasks, meditative tokens are densely attentive to most
of the input information in the shallow layers, while they showcase diverse attention regions in the deeper layers.This phenomenon illustrates that meditative tokens could adaptively capture task-related information with respect to diverse tasks. For the comprehension task (TQA), meditative tokens show
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a different attention pattern from perception tasks, which maintain sparse attention with input tokens in the shallow layers. These results validate that our proposed meditative tokens adaptively enable different regions of visual tokens and understand the intention of specific task questions.













(a) In-the-wild cases on TD task





















(b) In-the-wild cases on TSR task
Q: Answer the question and give a reason. what's the point of Flamingo-80B in VQAv2? A: 56.3 Reason: Flamingo-80B is a model in VQAv2. Its VQAv2 score is shown in the second column, which is 56.3.

Q: Answer the question and give a reason. How many datasets utilized in the Conversation task?
A: 5 Reason: There are 5 datasets utilized in the Conversation task, which are LLaVA- 150K, SVIT, VisDial, LLaVA-Mix-665K and LRV-Instruction.
(c) In-the-wild cases on TQA task
Figure D4: Qualitative results of TabPedia on in-the-wild cases. TabPedia achieves impressive performance in these unseen images, which validates its robustness and generalization. Zoom in for best view.
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Table Detection Attention Map (Head 24)
Q	Low-Res	High-Res	Q	Low-Res	High-Res


Layer 1	Layer 29

Layer 2	Layer 30

Layer 3	Layer 31

Layer 4	Layer 32


Table Structure Recognition Attention Map (Head 24)
Q	Low-Res	High-Res	Q	Low-Res	High-Res

Layer 1	Layer 29

Layer 2	Layer 30

Layer 3	Layer 31

Layer 4	Layer 32


Table Query Attention Map (Head 24)
Q	Low-Res	High-Res	Q	Low-Res	High-Res

Layer 1	Layer 29

Layer 2	Layer 30

Layer 3	Layer 31

Layer 4	Layer 32


Table Question Answering Attention Map (Head 24)
Q	Low-Res	High-Res	Q	Low-Res	High-Res

Layer 1	Layer 29

Layer 2	Layer 30

Layer 3	Layer 31

Layer 4	Layer 32
Figure D5: Visualization of attention maps between meditative tokens and the sequence of instruction and visual tokens.“Q”,“Low-Res” and “High-Res” denote the instruction tokens, global visual tokens and local visual tokens, respectively. Y-axis denotes the meditative tokens. Zoom in for best view.
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5 o massage therapistslcensed in Connacticut (1999) and Washington (1998) b broad and

Connectieut Washingion
(=965 i) (= 1040 i)

Brosd Caregores® %with Pimary Broad Caregores® it Primary

Reson Reason
1. Musculosksetl Symproms 592 1. Musculoskleal Sympeoms @0
2 Welners™® 195 2 Welness** 187
3 Pychologial and Mersal Hesleh 88 3 Paychologica nd Montal Healt 57
Symioms Symtoms
4 GeneralSymproms s 4 Nervous System Symproms s
5 Nervous System Symproms 37 5. General Symproms. 37
Top 5 Carsgoris 957 Top § Catgories 960

icn it

Specifc Reasons Primary Resson  Any Resson  Specifc Reasons Primary Reason - Any Resson
1 Back Symptoms 204 34 1. Back Symproms 02 98
2 Massage Wallnoss 195 288 2 Neck Symproms 00 385
3 Neck Sympoms 10 U1 3 Massage Welhess 187 25
4. Shoulder Symproms 84 21 4 Shouldor Symprome 74 266
5. Aiey or Depression 88 174 5. Ancety or Depression 52 23
& Leg Symproms 50 100 6 Headxche 37 84
7. Unspacied Muscle Symproms. 40 63 7. Leg ymproms 2% 6
8. Genersized Pan 31 45 8 Generalied Pin 21 35
9. Hesdache i 52 9 rip Symproms It &7
10, Unspeciied Jone Symptoms 14 22 10 Arm Symproms I8 ss
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+# Welles v ot rignaly pare ofthe NAMCS Resson for Vise Clsafcaion, Mos o these vilcs refor relaxadion.

Table 3: Diagnostc assessments performed by massage therapiss licensed in Connecticut (1999) and Washington (1998)
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‘Appled Kinesilogy 20 s8
Poscurs Assesament 158 07
Range of Motion 349 160
Tissue Assesament 563 s
Other (e cupressure poine asessment) 7 27

Discussion
“To our knowledge, this i the firststudy that describes the
demographic and waining characteristics of US massage
therapists and uses systematically collected visit data to
describe their treatment patterns. Strenghs of the study
are the collection of data from licensed massage therapists
pracicing in geographically separated parts of the country.
where CAM use is relatively common, random sampling.

of providers from state licensing liss, relatively high
response rates, and large sample sizes. The main limita-
tion i that we collected data from only two states, which
may not be representative of massage practice in other
states.

However, licensure_requirements in Connecticut and
‘Washington are similar to those in most other states with
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