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Abstract

Tables contain factual and quantitative data accompanied by various structures
and contents that pose challenges for machine comprehension. Previous methods
generally design task-specific architectures and objectives for individual tasks,
resulting in modal isolation and intricate workflows. In this paper, we present a
novel large vision-language model, TabPedia, equipped with a concept synergy
mechanism. In this mechanism, all the involved diverse visual table understand-
ing (VTU) tasks and multi-source visual embeddings are abstracted as concepts.
This unified framework allows TabPedia to seamlessly integrate VTU tasks, such
as table detection, table structure recognition, table querying, and table ques-
tion answering, by leveraging the capabilities of large language models (LLMs).
Moreover, the concept synergy mechanism enables table perception-related and
comprehension-related tasks to work in harmony, as they can effectively leverage
the needed clues from the corresponding source perception embeddings. Fur-
thermore, to better evaluate the VTU task in real-world scenarios, we establish
a new and comprehensive table VQA benchmark, ComTQA, featuring approx-
imately 9,000 QA pairs. Extensive quantitative and qualitative experiments on
both table perception and comprehension tasks, conducted across various public
benchmarks, validate the effectiveness of our TabPedia. The superior performance
further confirms the feasibility of using LLMs for understanding visual tables when
all concepts work in synergy. The benchmark ComTQA has been open-sourced at
https://huggingface.co/datasets/ByteDance/ComTQA. The source code and model
will be released later.

1 Introduction

With the rapid advancement of digital technology, numerous paper documents must be converted
into electronic formats for efficient storage and utilization. Tables, as indispensable components
of documents, play a vital role in summarizing facts and quantitative data [1, 2]. The compact yet
informative nature of tables makes them advantageous for various applications, thereby attracting
widespread research attention toward Visual Table Understanding (VTU). VTU generally encom-
passes four subtasks: Table Detection (TD), which locates tables within document images; Table
Structure Recognition (TSR), which parses the structure of tables in table-centric images; Table
Querying (TQ), which recognizes the structure of a table from an entire image at a given location, a
task that remains underexplored in the previous works; and Table Question Answering (TQA), which
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answers questions based on table contents. These tasks pose challenges from various perspectives
due to the need for representations at different visual-semantic granularities and hierarchies.

Given the success achieved, many pioneering works have mainly centered on the specific subtask with
various task-specific architectures, as shown in Fig. 1 (a). For visual table perception tasks such as TD
and TSR, one of most adopted approaches is in the detection manner [3–9]. In contrast, generative
vision-language models [10–13] are often employed to generate answers conditioned on the semantic
content of tables for TQA task. Specifically, Vision Transformers (ViT) [14] pretrained on CLIP
[15] or EVA-CLIP [16], Swin-Transformer [17], and similar models serve as vision encoders, while
language models operate in either encoder-decoder [18, 19] or decoder-only frameworks [11, 20–22].
Besides, recent fast-growing Large Vision Language Models (LVLMs) [11, 13, 23–34] have shown
their powerful capabilities to perceive and understand visual clues by integrating instruction following
of Large Language Models (LLMs) [35–39]. Despite impressive progress, the status quo begs for a
question: “Can we leverage the advantages of LVLMs to solve all the VTU tasks once and for all?”

A straightforward solution would be to train the LVLM directly using all the VTU data. However,
aside from the diverse table structure and the various relations of table contents, it remains a
nontrivial issue due to two cruxes of table parsing and understanding: (i) discrepancy between the
representation formats (two-dimensional structure VS. one-dimensional sequence); (ii) required
image resolutions. Although some works [40–42] represent table structure in markup formats like
HTML, XML, Markdown, or LATEX. However, they neglect spatial coordinates for cells and only
encode logical relationships implicitly. The generated code contains extensive formatted information
from different markup languages, increasing output length and potentially causing parsing issues
with illegal grammars.

To attack above issues, we in this paper propose a novel LVLM tailored for comprehensive VTU,
TabPedia, to effectively solve all VTU tasks in a unified framework, as shown in Fig. 1 (b). More
concretely, we employ dual vision encoders, namely ViT-L [15] and Swin-B [43], to encode the
global and fine-grained local information in the low- and high-resolution formats of the input image
respectively, acquiring multi-source visual embeddings. Here, all the involved VTU tasks and multi-
source visual embeddings are abstracted as concepts and concept synergy mechanism is implemented
by introducing the mediative tokens to the LLM in our model. Thanks to this mechanism, all the
concepts in TabPedia can work in synergy flexibly. Quantitative and qualitative experimental results
on both table perception and comprehension tasks across various public benchmarks confirm the
effectiveness of our proposed TabPedia. To further investigate the potential of our model in more
challenging and realistic scenarios, we establish a new and comprehensive table VQA benchmark,
ComTQA, featuring round 1,500 images and 9,000 QA pairs.

Our contributions are summarized as follows,

• We propose a novel large vision-language model, TabPedia, to integrate various VTU tasks
into a unified framework, including TD, TSR, TQ and TQA. Specifically, TabPedia fully
leverages the comprehensive capabilities of LLMs to fertilize complex table understanding.

• We design a concept synergy mechanism to harmonize both table perception and compre-
hension tasks. Through introducing the meditative tokens into our framework, TabPedia
adaptively enables useful information in multi-source visual embeddings and task instruc-
tions, generating accurate and plausible responses.

• Extensive quantitative and qualitative experiments validate the effectiveness of our proposed
TabPedia across various tasks and benchmarks. To further exploit the potential of our model
in more complex scenarios, we build a new table VQA benchmark, ComTQA, involving
multiple answers, mathematical calculation and logical reasoning, etc.

2 Related Work

2.1 Table Recognition
Table recognition is generally divided into table detection, table structure recognition and table
content recognition In our work, table content recognition is beyond our scope.

For TD task, the earliest approaches are rule-based methods for locating tables inside documents [44–
46]. With the rapid advances in deep learning, numerous CNN-based methods show impressive
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Figure 1: Comparison with previous task-specific pipelines for visual table understanding. In contrast
to design different architectures for various table tasks, our TabPedia effectively performs these tasks
in a unified framework through delicately leveraging the understanding capability of LLMs.

performance. Most of these methods directly adopt top-down object detection frameworks to solve
this problem [5, 47–52]. For instance, Sun et al. [52] adopt Faster R-CNN [52] to detect table boxes
and the corresponding corner boxes simultaneously, and then adjust table boundaries according to the
detected corners. Some other methods model each document image as a graph and formulate TD as a
graph labeling problem [53–55]. In addition, TATR [9] first applies the transformer-based detector,
DETR [56], to improve the detection accuracy without special customization.

For TSR task, one of the most common modeling approaches is still to regard it as some form of object
detection [3–5, 9, 57–59]. Among them, DeepDeSRT [4] and TableNet [60] are both representative
works exploring semantic segmentation to obtain table cell boundaries. TATR [9] first proposes to
utilize DETR for this task. TSRFormer [58] introduces a cross-attention module into the DETR
framework to improve the localization accuracy of row/column separators. Some other methods
attempt to parse table structure via modeling relationship among different table elements [61–63].
As the most relevant to our approach, markup generation-based methods directly generate markup
(HTML or LaTeX) sequences from raw table images [41, 64]. EDD [64] introduces a cell decoder and
a structures decoder to generate HTML codes. OmniParser [41] further integrates three task-specific
decoders to enhance the table structure representation.

While the previous methods have achieved promising results on table perceptive tasks, they are still
limited in table intricate content understanding. In our work, we jointly exploit table perception and
comprehension tasks in a unified framework, concurrently enriching visual table understanding.

2.2 Large Vision-Language Models
LVLMs aim to equip LLMs [29, 36, 38, 39, 65] with visual comprehension capability. The mainstream
approaches attempt to connect visual encoders and LLMs with intermediate modules such as simple
Projectors [30], QFormer [25], Perceiver Resamplers [23], achieving visual language understanding
through pre-training alignment and instruction fine-tuning. For text-rich document scene, several
works [10, 13, 40, 41, 66–68] propose to enhance the LVLMs’ capabilities in understanding textual
elements (text-centric VQA, OCR, text spotting, etc.). Among them, TextMonkey [12] employs
shifted window attention and token resampler module to improve the training process. DocOwl-
1.5 [40] collects a comprehensive dataset DocStruct4M to support unified structure learning.

Despite achieving extraordinary progress on visual understanding, existing LVLMs still face chal-
lenges in two-dimensional table parsing and understanding. In this paper, we propose a unified
framework to concurrently achieve table perception and comprehension with the support of LLMs.

2.3 Additional Tokens
In the trend of Transformer-based approaches, extending the input sequence with special tokens is
popularized for various intentions, such as extracting task-specific information [14, 56], providing
extra information [69, 70] or improving model performance [71–74]. For instance, ViT [14] utilizes
[CLS] token for classification. Similarly, DETR [56] proposes object queries for detection. ATR [70]
adopts tape tokens to obtain useful information from a memory bank. In addition, the Memory
Transformer [71] presents a simple approach to improve translation performance by attaching trainable
memory tokens after the token sequence. Darcet et al., [73] further attempt to add extra tokens in ViT-
based frameworks, e.g., CLIP [15] and DINOv2 [75], thus improving visual tasks. In our work, we

3



Low-Resolution
Vision Encoder

High-Resolution
Vision Encoder

Projection Projection

… …

Large Language Model (Vicuna-7B)

“Display the table 
element positions in 

this picture.”

Tokenization

…
Meditative Tokens

…

Here is a list of all the locations of table element in the picture:
[0.094,0.143,0.487,0.612]\n
[0.510,0.143,0.903,0.646]

Rendering

Pre-Training

Vicuna-7B

Projections 🔥🔥

Vision Encoders🔥

Fine-Tuning

Vicuna-7B

Projections 🔥🔥

Vision Encoders🔥

🔥

Figure 2: The illustration of our proposed TabPedia. Given the input image, TabPedia feeds it into
both vision encoders attached projections to extract different granular features. Then, the visual
tokens are combined with instruction-derived tokens, and fed into the LLM. The LLM leverages its
powerful understanding ability to generate a plausible response.

inherit this spirit and design meditative tokens to enhance TabPedia’s perceptive and comprehensive
capability for visual tables.

3 Method

As shown in Fig 2, we present an overview of TabPedia. The overall training pipeline consists of
two phases. Concretely, the pre-training stage aims to align the visual features to the large language
model, and the fine-tuning stage focuses on visual table-aware understanding. In the following, we
elaborate on the architecture of TabPedia, followed by the exposition of its two training phases.

3.1 Model Architecture

High-Resolution Vision Encoder. As proved by previous methods [43, 76, 77], the high-resolution
image is critical to ensuring that the LLMs could grasp rich visual information. Following Donut [43],
we adopt Swin-B [17] to encode the high-resolution format of input image. Given the input RGB
image I , we first resize it to pre-defined high-resolution scale of H×W, denoted as Ih. By default,
both H and W are set to 2,560 and 1,920, respectively. Notably, we maintain the aspect ratio during
the resizing process to prevent distortion of table contents and structures. Then, the resized image Ih
is fed into the vanilla Swin Transformer initialized from [43] to obtain a feature map Vh downsampled
by a factor of 1/32, each token with 1,024 dimension.

Low-Resolution Vision Encoder. To keep the overall layout information, the raw image is also
resized to a low-resolution one denoted as Il. We choose the pre-trained CLIP visual encoder ViT-
L/14 [15] to encode the low-resolution image with 224× 224. The output sequence Vl is composed
of 256 tokens, each with 512 dimension.

Projections. The projections are designed to align visual tokens with the input token dimension
of the subsequent large language model [65]. For the high-resolution feature map Vh, due to the
limitation of input text length, we employ a 2D convolutional layer with a kernel size of 3 and a stride
of 2, and then flatten it into H

64 × W
64 tokens, denoted as V̂h. For the low-resolution visual features Vl,

inspired from the paradigm of advanced LVLMs [29, 30], we adopt a linear layer to project visual
tokens, denoted as V̂l.

Concept Synergy. Given the massive visual tokens and the embedding of textual instruction Q, we
utilize Vicuna-7B [65] as LLM to generate its response. Taking into account the discrepancy of table
perception and comprehension tasks, we introduce meditative tokens M to implement the concept
synergy for the LLM, which adaptively enable different region of visual tokens and understand
the intentions of specific task question. Finally, we construct the whole input sequence as X =
[Q, <IMG_S> ;V̂l ; <IMG_SEP> ; V̂h ; <IMG_E> ; M], where [; ] means the concatenation operation.
<IMG_S>, <IMG_E> and <IMG_SEP> are learnable special tokens, that denote the start and end of
visual tokens as well as the separation of different resolution tokens, respectively.
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Table 1: Summary of training data statistics in
the fine-tuning stage.

Dataset Subset Task Num

PubTab1M
PubTab1M-Det TD 460k
PubTab1M-Str TSR,TQA 759k
PubTab1M-Syn TQ 381k

FinTabNet – TSR,TQA 78k

PubTabNet – TSR 434k

WTQ – TQA 1k

TabFact – TQA 9k

Table 2: Different task types and their instruc-
tion examples.

Task Example

TD “Give me the areas where table element’s
locations in this picture.”

TSR “Parse the structural information of the cropped
table in this picture.”

TQ “Parse the table structure within the region
[0.095, 0.673, 0.869, 0.851] in this picture.”

TQA “What was the lowest stock price in the fourth
quarter of 2010?”

Objective. Since TabPedia is trained to predict the next tokens like other LLMs, it is optimized by
maximizing the likelihood of prediction loss at training time.

3.2 Pre-training

To enable the capable of vision encoders to capture text-rich information from high-resolution images
and aligning embedding space with the large language model [65], we first perform extensive text-
aware pre-training. As shown in Fig. 2, we jointly optimize the high-resolution visual encoder
with both projectors, while freezing the large language model and low-resolution vision encoder.
Specifically, followed by [10], our pre-training procedure involves a variety of perception tasks, i.e.,
text detection [78], recognition [79], spotting [80], long-text reading [43] and image captioning [81].
The first four tasks focuses on the various document images, while the last one targets natural
scene images. These comprehensive tasks endow the vision encoders of TabPedia to effectively
perceive textual and visual information from both document and natural scene images. More detailed
pre-training settings about dataset and experiment could be referred to [10].

3.3 Table-aware Fine-tuning

Through pre-training, TabPedia could well understand text and structure of diverse document images
but cannot follow instructions to perform different table understanding tasks. In order to enhance
the model capability of instruction following, we first construct a large-scale dataset for visual table
understanding. We will elaborate on the dataset construction in the Sec. 4. Based on this dataset,
we introduce four table-related tasks, i.e., TD [9], TSR [5, 9, 64], TQ and TQA [5, 9, 82, 83] to
simultaneously cultivate the perception and comprehension capabilities. In this stage, we further
unfreeze the LLM and fine-tune the entire framework except the low-resolution vision encoder.

4 Dataset Construction

In this section, we aim to introduce the collected instruction following dataset. The entire data
is derived from five public datasets, including PubTab1M [9], FinTabNet [5], PubTabNet [64],
WikiTableQuestions (WTQ) [82] and TabFact [83]. Among them, PubTab1M [9] contains two
subsets, i.e., PubTab1M-Detection (PubTab1M-Det) and PubTab1M-Structure (PubTab1M-Str).
Moreover, since the table images in PubTab1M-Str are cropped from PubTab1M-Det, we transform
the annotations of the table structure in PubTab1M-Str into the original images and synthesize a new
subset PubTab1M-Syn, which could be utilized for TQ task. The statistical data are summarized
in Tab. 1. To ensure the instruction diversity, we generate multiple instructions for each task using
GPT3.5 [21]. In Tab. 2, we display one exemplar about user’s question for each table task. We will
provide a detailed exposition of them in the following.

Table Detection (TD). As a fundamental task, TD task targets to detect all table locations in a
document image. Previous methods [3, 6, 9] mainly utilize DETR [56] or variants of R-CNN [84–86]
to predict numerous overlapping bboxes, that inevitably needs complex post-processing, such as
non-maximization suppression (NMS), to generate final results. In contrast, we employ LLM to
directly generate the locations of instance tables in the format of “[x1, y1, x2, y2]”, where x1, y1, x2,
y2 represent the normalized coordinates of the top-left and bottom-right of the corresponding bbox.
Moreover, to facilitate detection results for multiple tables, we split multiple table positions with the
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special symbol “\n” in the output response. We adopt PubTab1M-Det [9] to perform TD task, where
images are collected from PDF documents with different scale and rotation types of tables.

Table Structure Recognition (TSR). The TSR targets to parse table structure in terms of rows,
columns and cells. HTML and Markdown codes are mainly two kinds of text sequences used to
represent a table. HTML could represent all kinds of tables, with or without cells spanning multiple
rows and grids, but they contain massive markup grammars i.e., “<div></div>” and “<td></td>”,
resulting in excessively lengthy output responses. Compared with HTML, Markdown represents a
table more succinctly, but it cannot represent cells spanning multiple rows or columns. By weighing
the simplicity of the output and the completeness of the table parsing, we propose a canonical table
structure representation based on the detection format. Inspired by [9], we jointly adopt five object
classes to model TSR, including table column, table row, table column header, table projected row
header and table spanning cell. To better understanding, we display a representative sample in
Appendix B. Taking into account the serialized output of the LLM, we represent the table structure
with a series of “[object] [x1, y1, x2, y2]”, which are also separated by “\n”. Notably, we standardize
the order of the output objects to ensure uniqueness of the table parsing results.

We select the PubTab1M-Str [9], FinTabNet [5] and PubTabNet [64] to support the TSR task, where
tables are collected from scientific and financial articles. These datasets contain pairs of table images
and HTML annotations. We convert HTML codes into our designed annotation format using the
pre-processing tool offered by [9].

Table Querying (TQ). Different from recognizing table structure from the cropped table-centric
images in TSR task, the TQ task directly parses the table from the original document image based on
the given table location. This task is more challenging due to the degradation of the table’s resolution
and the interference of other document contents around it. Moreover, this task could potentially be
combined with TD task to enable automatic parsing of all table structure information in original
images. Therefore, we introduce this task to fully unlock the comprehension capabilities of large
language models for visual table understanding. For the annotation of table parsing, we adopt the
same format as TSR. Since there is no readily available dataset, we synthesize a large amount of
available data based on the annotations from PubTab1M [9], namely PubTab1M-Syn.

Table Question Answering (TQA). TQA aims to provide precise answers through table understand-
ing and reasoning. For both public TQA datasets, i.e., WTQ [82] and TabFact [83], the table images
are collected from wikipedia tables with pairs of content-related question and answer. Thus, we could
directly apply these available data to support this task. However, the images of current TQA data are
rendered from text-based tables with variations in background color and font size, resulting in poor
generalization in real-world tables. In addition, the TQA data volume lags far behind other tasks.
To alleviate these obstacles, we generate numerous TQA data with partial images in FinTabNet [5]
and PubTab1M [9] by employing the powerful multi-modal understanding capabilities of Gemini
Pro [87]. We provide more detailed descriptions of the procedure in the Appendix A.1

To better evaluate TQA performance of various models on real-world table images, we build a complex
TQA dataset (ComTQA) based on test set of FinTabNet [5] and PubTab1M [9]. Compared to WTQ
and TabFact, ComTQA has more challenging questions, such as multiple answers, mathematical
calculations, and logical reasoning. In total, we annotate ∼9k high-quality QA pairs from ∼1.5k
images by expert annotation. More statistics about ComTQA could be found in the Appendix A.2.

5 Experiment

5.1 Implementation Details

Parameter Settings. For the hyper-parameters in model design, the number of meditative tokens is
set to 256. The max length of text sequence is set to 4000 to satisfy task requirements. To implement
TabPedia, we adopt a cosine schedule with one-cycle learning rate strategy [88]. In the pre-training
phase, the learning rate warms up in the first 2% of the training process and then decreases from the
peak rate (1e-3) with batch sizes of 64. In the fine-tuning phase, we set the peak learning rate as 5e-6
with batch sizes of 16. We employ the AdamW optimizer [89] in both phases. All experiments are
implemented by PyTorch [90] and trained on 16× A100 GPUs.

Datasets. In order to comprehensively evaluate the capability of TabPedia, we employ multiple
benchmarks for each task. For performance assessment, we set the temperature parameter as 0.2
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Table 3: Comparison with the existing best table detec-
tion model TATR [9]. NMS denotes Non-Maximum
Suppression.

Method Backbone NMS IoU@0.75

Precision Recall F1

TATR [9] Faster R-CNN ! 92.7 86.6 89.5
DETR ! 98.8 98.1 98.4

TabPedia LVLM % 98.5 98.4 98.4

Table 4: Comparison with end-to-
end TSR methods on two datasets.
“∗” represents the results reported
by [41].

Method Input Size PubTabNet FinTabNet

S-TEDS S-TEDS

Donut [43]∗ 1,280 25.28 30.66
EDD [64] 512 89.90 90.60

OmniParser [41] 1,024 90.45 91.55

TabPedia 2,560 95.41 95.11

Table 5: Quantitative results on two subsets of Pub-
Tab1M [9], including PubTab1M-Str and PubTab1M-
Syn.
(a) Comparison with the task-specific model, TATR [9] on TSR
task. “Cropped” denotes utilizing cropped table-centric images.

Method Backbone Image NMS PubTab1M-Str

GriTSTop GriTSCont GriTSLoc S-TEDS

TATR [9] Faster R-CNN Cropped ! 86.16 85.38 72.11 –
DETR Cropped ! 98.46 97.81 97.81 97.65

TabPedia (TSR) LVLM Cropped % 96.52 96.73 95.54 95.66

(b) Quantitative results on both TQ and TD+TQ tasks.

Method Image NMS Task PubTab1M-Syn

GriTSTop GriTSCont GriTSLoc S-TEDS

TabPedia Raw %
TQ 96.04 96.23 94.95 95.07

TD+TQ 94.54 94.63 93.25 93.38

Table 6: Comparison with existing
LVLMs on TQA task. “∗” denotes
the results obtained through the open-
source checkpoint or API of the closed-
source model. ComTQA is our re-
leased new benchmark. The second
best methods are underlined.

Method Input Size WTQ TabFact ComTQA

Acc Acc Acc

TextMonkey [12] 896 37.9 53.6 13.9∗

Monkey [93] 896 25.3∗ 49.8 –
Cogagent [94] 1,120 30.2∗ 51.7∗ –

DocOwl 1.5 [40] 1,344 39.8 80.4 18.5∗

GPT4V [95] 645 45.5∗ 69.3∗ 27.2∗

Gemini Pro [87] 659 32.3∗ 67.9∗ 29.3∗

Xcomposer2 [96] 511 28.7 62.3 –

TabPedia 2,560 47.8 71.3 53.5

in both quantitative and qualitative evaluations. For TD task, PubTab1M-Det [9] contains 57,125
images for testing. For TSR task, FinTabNet [5], PubTabNet [64] and PubTab1M-Str [9] are adopted
for evaluation with 9,289, 9,115 and 93,834 testing samples, respectively. For TQ task, the synthetic
dataset PubTab1M-Syn [9] also provides 47,186 samples for testing. For TQA task, WTQ [82],
TabFact [83] and our annotated ComTQA contain 4,343, 12,722 and 9,070 QA pairs, respectively.

Evaluation Metrics. For TD task, we report the results with object detection metrics, including
precision, recall and f1-score with IoU@0.75. For both TSR and TQ tasks, we utilize Structure
Tree-EditDistance-based Similarity (S-TEDS) [64], which evaluates table similarity of structural
aspects in HTML format. The metric represents the HTML table as a tree, and the TEDS score
is computed through the tree-edit distance between the ground truth and predicted trees. In order
to convert the results of TabPedia into HTML format, we employ the post-processing algorithm
provided by [9]. Moreover, we report the recently proposed GriTS metrics [91] for PubTab1M-Str
to align its original metric. Different from S-TEDS, GriTS represents tables as matrices, better
capturing the two-dimensional structure and the orders of cells in a table. Further, GriTS enables
TSR to be assessed from multiple perspectives, with GriTSTop measuring cell topology recognition,
GriTSCont measuring cell content recognition, and GriTSLoc measuring cell location recognition.
For TQA task, we adopt the accuracy metric where the response generated by the model is judged
correct if it contains the string present in the ground truth [92].

5.2 Quantitative Results

We conduct quantitative evaluations of current state-of-the-art methods for specific tasks in perception
and comprehension, comparing them to our proposed TabPedia.

Evaluation on TD. In Tab. 3, we compare TabPedia with the previous state-of-the-art method,
TATR [9]. TATR performs the table detection with two classic visual detection backbones, i.e,
DETR [56] and Faster R-CNN [85]. Compared with them, TabPedia outperforms Faster R-CNN
with a notable margin and achieves competitive performance with DETR. Notably, since TabPedia
directly generates the independent locations of instance tables without densely overlapped bboxes,
there are no extra post-processing operations involved, i.e., Non-Maximum Suppression (NMS). This
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advantage could enable TabPedia to perform more complex table understanding, such as parsing all
tables by combining TD and TQ tasks.

Evaluation on TSR. Tab. 4 reports the performance of TSR task compared to end-to-end TSR models
on PubTabNet and FinTabNet datasets. Specifically, the OCR-free model Donut [43] is fine-tuned for
TSR with the official default training configuration. Although OmniParser [41] integrates multiple
visually-situated text parsing tasks into a unified framework, it adopts three isolated decoders to
perform different tasks. Compared with OmniParser, TabPedia consistently surpasses it with 4.96%
and 3.56% S-TEDS on both datasets, respectively. In Tab. 5a, TATR as the task-specific method,
shows high performance with the DETR architecture. Our proposed TabPedia, a generic model for
tasks involving both perception and comprehension, still achieves comparable performance without
the need for complex post-processing. These results highlight the exceptional capability of TabPedia.

Evaluation on TQ. As a new and unexplored task, the TQ task aims to parse table structures with the
specific location directly from the raw image without additional cropping. In the first row of Tab. 5b,
we provide a strong baseline with 96.04% and 95.07% on GriTSTop and S-TEDS, respectively, which
nearly reaches the same performance as parsing from the cropped images under the interference of
the document content around the table. Furthermore, we integrate both TD and TQ tasks in the form
of multi-round dialogue, which endows TabPedia to directly parse all existing tables in a document
image. We report the final result in the second row of Tab. 5b. These impressive results demonstrate
that TabPedia has the potential to enable more holistic table understanding.

Evaluation on TQA. Due to the complex structure of tables and the dense text, the understanding
of the table contents remains a challenging issue. To thoroughly evaluate the performance of the
understanding of table content and structure, we adopt two public benchmarks, i.e., WTQ [82] and
TabFact [83], and our collected dataset ComTQA, as shown in Tab. 6. On the WTQ and TabFact,
TabPedia achieves promising performance among the open and close sources LVLMs. In contrast
to existing benchmarks, ComTQA contains real-world table images with more complex questions.
It is observed that current LVLMs show poor performance due to the incomplete understanding of
real-world table structures. Compared with them, TabPedia achieves the optimal result with a notable
margin, which demonstrates the effectiveness of jointly learning perception and comprehension tasks.

5.3 Qualitative Results
We further conduct qualitative evaluation on TabPedia’s perception and comprehension capabilities.
Firstly, we show the perception capability of TabPedia with solely TD and TSR tasks, as illustrated
in the first row of Fig. 3. TabPedia accurately generates reliable and formatted results, which are
rendered to the original image for better observation. Secondly, TabPedia performs a complex task to
directly parsing all table structure information in a document image by integrating instructions of
TD and TQ tasks within a multi-round dialogue. As shown in the second row of Fig. 3, the example
indicates that TabPedia is capable of exploring more holistic visual table understanding. In the last
row, we display the table comprehensive capability of TabPedia. It is observed that the response
not only contains concise and reliable answer, but also provides the specific contents in the table to
support its answer. Especially, TabPedia even acquires certain math calculation ability to capture the
connections among table contents, as shown in the bottom right example in Fig. 3. These results
demonstrate Tabpedia’s powerful multimodal comprehension capabilities. We also display more
visualization results in the Appendix D.

5.4 Ablation Studies

In this section, we conduct ablation studies to validate the effectiveness of core settings and compo-
nents in TabPedia. All experiments are conducted on three datasets across three tasks: PubTab1M-
Det [9], FinTabNet [5] and WTQ [82].

Impact of meditative tokens. In Tab. 7, we conduct the experiment to investigate the impact of
adding meditative tokens in TabPedia. It is observed that adding meditative tokens significantly
improves TabPedia’s capabilities of table perception and comprehension. We also provide a detailed
analysis of the attention map of meditative tokens in Fig. D5 of Appendix. D.

Impact of vision encoders. As shown in Tab. 8, we explore the impact of different vision encoders.
In TabPedia, we propose both vision encoders to capture global and local information of the input
image with different resolutions. For the high-resolution encoder, it could extract more intricate
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ADS_2007_page_176_table_0.jpgADS_2007_p
age_176_table_0.jpg

Display the table element positions 
in this picture.

🤖Here is a list of all the locations of 
table element in the picture:
[0.095,0.152,0.898,0.494]\n
[0.095,0.594,0.813,0.751]

Rendering in the original picture

Extract the structural information 
of the cropped table in this picture.

🤖
The table structural information in the picture is 
listed as following:
spanning cell [0.586,0.154,0.991,0.170]\n
spanning cell [0.586,0.189,0.991,0.207]\n
projected row header [0.004,0.207,0.991,0.227]\n
……
column [0.877,0.154,0.991,0.845]

Rendering in the 
original picture

ADS_2007_page_176_table_0.jpgADS_200
7_page_176_table_0.jpg

joel houston compose 4 of the song on the album con todo, 
Yes or No?

🤖
Yes Reason: From the image, we can see that Joel Houston 
composed 4 songs on the album Con Todo, which are 'Para 
Exaltar', 'Correndo', 'Desde Mi Interior' and 'Con Todo'. So the 
answer is Yes.

Display the table element positions 
in this picture.

Here is a list of all the locations of 
table element in the picture:
[0.085,0.097,0.485,0.667]\n
[0.513,0.097,0.912,0.443]

🤖

Describe the specific structure of the 
table in the region [0.085,0.097,0.485, 
0.667] of this picture.

ADS_2007_page_176_table_0.jpgADS_2007_page_176_
table_0.jpg

What was the change in weighted-average exercise 
price from 2005 to 2006?

🤖
Decrease of $21.08 thousands Reason: The weighted-average exercise 
price decreased by $21.08 from $57.54 in 2005 to $36.46 in 2006. This 
decrease can be attributed to a number of factors, including a decrease 
in the fair value of the company's stock and a decrease in the expected 
future cash flows of the company. ✓

DocOwl 
1.5

$18.12 ✗

$0.98 ✗
Text

Monkey

Gemini

According to the table, the 
change in weighted-average 
exercise price from 2005 to 
2006 is $21.08. In 2005, the 
weighted average exercise price 
was $57.54 and in 2006 it 
decreased to $36.46. ✓

🤖
The table structural information in 
the region [0.085,0.097,0.485,0.667] 
of the picture is listed as following:
projected row header 
[0.085,0.153,0.485,0.173]\n
projected row header …

……
row [0.085,0.638,0.485,0.654]\n
row [0.085,0.654,0.485,0.667]\n
column [0.085,0.097,0.273,0.667]\n
column [0.273,0.097,0.351,0.667]\n
column [0.351,0.097,0.434,0.667]\n
column [0.434,0.097,0.485,0.667]

Describe the specific structure of the 
table in the region [0.513,0.097,0.912, 
0.443] of this picture.

🤖The table structural information in 
the region [0.085,0.097,0.485,0.667] 
of the picture is listed as following:
projected row header …

……
column [0.791,0.097,0.864,0.443]\n
column [0.864,0.097,0.912,0.443]

Rendering in the 
original picture

Figure 3: Qualitative results of TabPedia on diverse tasks. The first row shows its perception capability
on both TD and TSR tasks. The second row further exhibits TabPedia’s powerful ability by employing
multiple instructions of different tasks. The bottom row showcases TabPedia’s accurate responses
based on intricate contents in visual tables. Zoom in for best view.

Table 7: Impact of meditative tokens in Tab-
Pedia.

meditative
token

PubTab1M-Det FinTabNet WTQ

Precision S-TEDS Acc

93.5 92.17 43.2
✓ 98.5 95.11 47.8

Table 8: Impact of vision encoders in our TabPedia.

High-Res
Encoder

Low-Res
Encoder

PubTab1M-Det FinTabNet WTQ

Precision S-TEDS Acc

✓ 96.5 93.6 44.9
✓ 86.2 81.3 24.7

✓ ✓ 98.5 95.11 47.8

information from the text-rich image and achieve better performance than solely utilizing the low-
resolution encoder. Furthermore, the low-resolution encoder plays a crucial role in furnishing
comprehensive layout information, addressing the constrained receptive field of the high-resolution
encoder. The results clearly indicate that the synergy between both vision encoders enhances the
extraction of structural and content-related details from tables, which effectively improves perception
and comprehension tasks.

6 Limitation

In this section, we discuss the limitations of our TabPedia. Firstly, since we represent the table
structure with regular rectangular boxes, TabPedia is currently not capable of accurately parsing
structural information for twisted or distorted tables. Secondly, all images in TQA datasets, including
WTQ [82], TabFact [83] and ComTQA are dominated by tables. Therefore, TabPedia still lacks the
capability to directly answer the table question with original document image. In addition, it also
exhibits a deficiency in table cell recognition.
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7 Conclusion
In this paper, we propose a novel large vision-language model to unify diverse visual table under-
standing tasks, namely TabPedia. Specifically, we present a concept synergy mechanism to seamlessly
integrate diverse tasks and multi-source visual tokens embedded from dual vision encoders as con-
cepts. This mechanism is implemented by introducing the meditative tokens into the LLM. Then,
we fully leverage the capability of LLMs to effectively understand these concepts and generate
accurate and plausible responses. Extensive quantitative and qualitative experiments across various
public benchmarks validate the effectiveness of our TabPedia. To further investigate the potential of
TabPedia, we establish a challenging table VQA dataset, ComTQA, featuring round 9,000 QA pairs.
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A More details about TQA datasets

A.1 QA Pairs Generation

We depict the procedure of collecting QA pairs with an example in Fig. A1. For input image, Gemini
Pro [87] is prompted to first recognize the table structure with OCR results in the image, then generate
several question and answer pairs according to OCR results. In order to improve the reliability of the
generated answers, we leverage various prompting techniques, i.e, Chain-of-Thought and few-shot
prompting. According to the specific prompt, Gemini Pro will generate multiple QA pairs for each
input image and return them in an agreed-upon format. After obtaining raw responses generated by
Gemini Pro, we utilize the regularized matching algorithm and the special character filter in turn to
extract available question and answer pairs.

First recognize the table structure with OCR results in the image, then 
please generate several distinct question and answer pairs. 
All the question and answer pairs should satisfy: 
1. STRICTLY related to the table structure including OCR results. 
2. The questions and the answers should be in as much details as possible. 
3. If applicable, all the answers should be complemented in the "chain-of-
thought" pattern.
4. The questions should contain at least one reasoning question. 
5. The format should strictly follow: QUESTION1: XXXX 
ANSWER:XXXX QUESTION2: XXXX ANSWER:XXXX ...

QUESTION 1: What is the amount of long-term debt and lease 
obligations in 2011?\nANSWER: $85,543,000.\n\nQUESTION 2: 
What is the amount of short-term debt in 2010?\nANSWER: 
$8,676,000.\n\n
……

Gemini
User

QUESTION 9: Which year has the least amount of long-term debt 
and lease obligations?\nANSWER: 2011 has the least amount of 
long-term debt and lease obligations, with $85,543,000.

Filter

Generate

Q: What is the 
amount of long-
term debt and lease 
obligations in 2011?
A: $85,543,000.

Q: Which year has the least 
amount of long-term debt 
and lease obligations?
A: 2011 has the least 
amount of long-term debt 
and lease obligations, with 
$85,543,000.

…
Q: What is the trend of 
interest income from 
2009 to 2011?
A: The trend of interest 
income from 2009 to 
2011 is increasing. 

Figure A1: The illustration of an example for generating QA pairs with the powerful LVLM, Gemini
Pro [87]. The prompt includes several key rules to ensure the response quality as much as possible.

A.2 ComTQA Benchmark

In Tab. A1, we present the distribution of both data sources [5, 9] within the ComTQA dataset.
Concretely, ComTQA comprises a total of 9,070 QA pairs across 1,591 images, averaging 5 questions
per image. Different from existing TQA benchmarks [82, 83], ComTQA contains more complex
table questions in real-world table images to assess the robustness of various models. As shown in
Fig. A2, we showcase several representative examples, including multiple answers, mathematical
calculation and logical inference, which are the question types lacking in previous benchmarks.
To this end, we hope that ComTQA could fill this gap and serve as a reasonable benchmark for
community development.

Table A1: Statistics of ComTQA benchmark.

PubTab1M FinTabNet Total

#images 932 659 1,591
#QA pairs 6,232 2,838 9,070

Avg. per image 6 4 5

Q: Which beta value has the highest classification accuracy?
A: 0.4 \n 0.6 \n 0.8 \n 1.0

(a) multiple answers

Q: What is the sum of the calibration factors for the three models?
A: 3.8018

(b) mathematical calculation

Q: Which model predicts the largest volume at time 72?
A: Richards

(c) logical inference

Q: Which beta value has the highest classification accuracy?
A: 0.4 \n 0.6 \n 0.8 \n 1.0

(a) multiple answers

Q: What is the sum of the calibration factors for the three models?
A: 3.8018

(b) mathematical calculation

Q: Which model predicts the largest volume at time 72?
A: Richards

(c) logical inference

Figure A2: More visualization on ComTQA benchmark. We display several complex QA types, such
as multiple answers, mathematical calculation and logical inference. Zoom in for best view.
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B Annotation in TSR task

We illustrate the object classes utilized in TSR and TQ tasks as shown in Fig. B3. The intersection of
each pair of table column and table row objects can be regarded as table grid cells. These objects
construct a table’s hierarchical structure through physical overlapped rectangle boxes.

Row (odd)
Row (even)

Column (odd)
Column (even)

Spanning cell
Column header

Projected row header

Figure B3: The illustration of an example table with dilated bounding box annotations for different
object classes for modeling table structure recognition.

C Broader Impact

Our proposed model targets to unify multiple visual form comprehension tasks. This technology
could help more people with visual impairments access tabular data through cooperating with
improved screen readers and other assistive technologies. Moreover, automating table understanding
technology could reduce the need for time-consuming manual data entry and correction, freeing up
human resources for more complex and creative tasks. To be honest, this technology also brings some
negative societal impacts. As more table data is extracted and processed with automatic visual table
understanding, there is a heightened risk of sensitive information being mishandled or exposed. It is
crucial to ensure robust data privacy measures.

D More Qualitative Results

Results on in-the-wild cases. For better investigating the generalization of our proposed TabPedia, we
randomly select some document images from a document website and illustrate the generation results
in Fig. D4. For perception and comprehension tasks, TabPedia generates accurate and reasonable
responses in TD, TSR and TQA tasks, which sufficiently proves the robustness of our method for
visual table understanding.

Attention map of meditative tokens. In order to analyze the information extraction of meditative
tokens for different tasks, we visualized the attention maps of meditative tokens for input instructions
with different granularity of visual feature tokens, as shown in Fig. D5. For each task, we select the
shallow and deep four-layer attention maps in the LLM for visualization, respectively. The y-axis
represents the meditative tokens, while the x-axis represents the sequence of instruction tokens and
different granular visual tokens. For perceptive tasks, meditative tokens are densely attentive to most
of the input information in the shallow layers, while they showcase diverse attention regions in the
deeper layers.This phenomenon illustrates that meditative tokens could adaptively capture task-related
information with respect to diverse tasks. For the comprehension task (TQA), meditative tokens show
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a different attention pattern from perception tasks, which maintain sparse attention with input tokens
in the shallow layers. These results validate that our proposed meditative tokens adaptively enable
different regions of visual tokens and understand the intention of specific task questions.

(b) In-the-wild cases on TSR task

(a) In-the-wild cases on TD task 

Q: Answer the question and give a reason. 
what's the point of Flamingo-80B in VQAv2?
A: 56.3 Reason: Flamingo-80B is a model in 
VQAv2. Its VQAv2 score is shown in the 
second column, which is 56.3.

Q: Answer the question and give a reason. 
How many datasets utilized in the 
Conversation task?
A: 5 Reason: There are 5 datasets utilized 
in the Conversation task, which are LLaVA-
150K, SVIT, VisDial, LLaVA-Mix-665K and
LRV-Instruction.

(c) In-the-wild cases on TQA task
Figure D4: Qualitative results of TabPedia on in-the-wild cases. TabPedia achieves impressive
performance in these unseen images, which validates its robustness and generalization. Zoom in for
best view.
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Table Query Attention Map (Head 24)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 29

Layer 30

Layer 31

Layer 32

Low-Res High-ResQ Low-Res High-ResQ

Table Question Answering Attention Map (Head 24)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 29

Layer 30

Layer 31

Layer 32

Low-Res High-ResQ Low-Res High-ResQ

Table Detection Attention Map (Head 24)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 29

Layer 30

Layer 31

Layer 32

Low-Res High-ResQ Low-Res High-ResQ

Table Structure Recognition Attention Map (Head 24)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 29

Layer 30

Layer 31

Layer 32

Low-Res High-ResQ Low-Res High-ResQ

Figure D5: Visualization of attention maps between meditative tokens and the sequence of instruction
and visual tokens. “Q”, “Low-Res” and “High-Res” denote the instruction tokens, global visual
tokens and local visual tokens, respectively. Y-axis denotes the meditative tokens. Zoom in for best
view.
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